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Abstract — Arrays of coupled oscillators have recently

been considered for millimeter-wave power-combining. Such

systems possess a number of interesting and potentially

useful nonlinear dynamical phenomena. A new theory de-

scribing arrays of coupled millimeter-wave oscillators is pre-

sented, and two important applications of such arrays—CW

power combining, and a new mode-locking technique for

pulse generation—will be discussed. Conditions for estab-

lishing mutual synchronization and the correct phase rela-

tionships have been investigated with the theory, and veri-

fied experimentally using several prototype X-band arrays.

1. INTRODUCTION

Obtaining useful levels of power from solid-state millimeter-

wave systems will require combining the power from hun-

dreds, or even thousands of individual active devices. Qu~i-

optical device arrays [1] have been suggested as an efFt-

cient solution to this problem. One quasi-optical architec-

ture that has been successfully demonstrated is the coupled-

oscillator array [2]. In this approach, individual solid-state

oscillators with integrated antennas are grouped in an array.

Mutual coupling between the array elements then synchro-

nizes frequency and phase relationships, so that coherent

power-combining takes place in the free-space over the ar-

ray. In addition to CW power-combining, these coupled-

oscillator arrays can be operated in a fundamentally new

mode of operation [3–4] which produces periodic trains of

high-energy pulses. This new operation is based on a mode-

locking technique similar to that used in the short-pulse

laser community. Furthermore, mode-locked arrays possess

a beam-scanning property, whkh suggests their use in a

radar application.

Some rudiments of a coupled-oscillator theory have been

published to date [2]. This theory has been expanded

to explain the recent experimental observations of mode-

locked pulse trains. The theory is important in determining

the physical parameters required to synthesize a particular
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mode of operation. New theoretical results are presented in

this paper, includlng extensive computer simulations of ar-

ray phase dynamics. The theory is rigorously verified using

several Gunn diode arrays operating at X-band. In addi-

tion, new experimental results are presented for both the

CW power-combining and mode-locking applications.
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Figure 1 — Schematic showing the essential elements of a
quasi-optical coupled-oscillator array, Each oscillator contains
an integrated antemna, and mutual coupling between antennas
leads to oscillator interaction.

2. COUPLED-OSCILLATOR THEORY

The system under consideration is shown schematically in

figure 1. The oscillators are modelled by a simple, single-

tuned resonant circuit, with a lumped negative resistance

representing the active device; this simple model haa been

surprisingly successful in predicting the behaviour of man,y

types of oscillators, using a variety of devices. The mutual

interaction between oscillators is assumed to be described

by a complex coupling coefficient. For coupling between

adjacent oscillators, this coupling parameter is written as

A exp(–@). Following a standard method-of-averages ap-

proach [10–1 1], and assuming only nearest-neighbor inter-

action amongst array elements, yields the set of equations

for N oscillators
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where i=l,2, ..., N, and Ai, Wi, and (li are the amplitude,

frequency, and instantaneous phase, respectively, of oscil-

lator i, and Q is the Q-factor of the oscillator embedding

circuit. These equations are in a form of coupled Van der Pol

oscillators [10]. For A = O the oscillators are uncoupled, and

(1) reduces to a set of isolated limit cycle oscillators with

amplitudes Ai = 1 and frequencies LIA. These equations are

quite general, but are difficult to attack analytically because

of the nonlinearities.

3. CW POWER-COMBINING

If the coupling is not too strong, then the amplitudes of

the oscillators will remain close to their free-running values,

and the dynamics will be essentially contained in the phase

equation alone. Furthermore, if the free-running frequencies

are close enough, then the oscillators can lock to the same

frequency. When this happens, dOi/dt E w in the steady-

state, giving

wherei = 1,2, ..., N. This equation can be viewed as a

generalization of Adler’s equation [6]. Noting that one of

the phase variables is arbitrary and can be set to zero,

this is a set of N equations with N unknowns (w is an

unknown), which can in principle be solved for the un-

known phase distribution and steady-state synchronized fre-

quency. In general there are many possible phase distribu-

tions which satisfy (2), but not all are necessarily stable

solutions. Mode stability can be analyzed using a pert urba-

tion analysis, which leads to a linear matrix equation. This

stability analysis results in an additional constraint on the

phase variables.
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Figure 2 — Computer simulation of five nearly identicd
coupled oscillators. After an initial turn-on transient, the os-
cillators synchronize to a common frequency and phase,

Equation (2) was first considered in [2] for some simple

cases, to gain insight into the operation of oscillator chains.

Recently, (2) and the corresponding stability constraint have

been investigated analytically and through computer simu-

lations, in order to determine the necessary conditions for

coherent power-combining. Figure 2 shows an example sim-

ulation. The theory has also been experimentally verified in

a systematic and rigorous manner. Individual Gunn oscil-

lators [5] were fabricated and mounted on small aluminum

carriers, permitting a continuous variation of oscillator spac-

ings and hence the coupling between them. Antenna pat-

terns were then measured to characterize the phase and

amplitude distribution. A comparison of theoretical and

experiment al radiation patterns for one particular example

is shown in figure 3. The theory curve was calculated using

the phase distribution found from solving (2) and the sta-

bility constraint. Excellent agreement is observed between

theory and experiment regarding the number and placement

of lobes and nulls in the patterns.
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Figure 3 — Radiation patterns for four coupled oscillators,

for one particular value of the coupling phase 0. The excellent
agreement verifies that the theoretical formulation adequately

predicts the observed phase distribution.

4. MODE-LOCKED ARRAYS

Mode-locking refers to a situation where a number of equally

spaced spectral modes are simultaneously produced and

“locked” in phase, thereby producing a periodic train of

pulses. This technique is widely used in short-pulse laser

systems. Mathematically, the superposition of a set of

N = 2n + 1 different spectral modes can be written as

E(t) = ~ G exp {j(wd + A)} (3)
a=—~

The conditions for equally-spaced frequencies and locked

phases are

w~ = WO— iAw i= —n, . . ..n (4a)

A - di-I = A$ (4b)
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where Aw and A4 are constants. Assuming these conditions

are met, and with equal amplitudes, Ei = _Eo, then (1) can

be written as

E(t) = ~osin [N(Awt + Aqfr)/2] exp(jwot)

sin [(Aut + A@)/2]
(5)

which has the form of a carrier signal at a frequency wo

modulated by a periodic train of pulses, with pulse repeti-

tion frequency Au.

Recent demonstrations have shown that coupled-oscillator

arrays can also beoperated in this mode [3–4]. In this case,

each oscillator runs at a different frequency, and mutual

pulling effects “lock” thesystem into amode-locked state.

This can reexplained with reference to figure4. When an

external signal is injected into an oscillator which is out-

side thelocking bandwidth of the the oscillator, a spectrum

of frequencies duetobeating effects is produced [6–8]. The

additional frequencies are equally spaced by an amount pro-

portional to the difference in the injected and free-running

frequencies of the oscillator. In addition, Armand [8] has

shown that there is also a constant phase progression among

these additional spectral components. Theidea behind the

mode-locked array is to use the additional spectral compo-

nents arising from the mutual pulling effects to injection-

lock other oscillators in the system. In this way, the two

key requirements (4) for mode-locking can be enforced.
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Figure 4—Frequency spectrum oftwo coupled oscillators.

Mutual pulling effects give rise to a number of additional spec-

tral components. These can be used to injection-lock other

oscillators.

Figure 5 shows the measured output power (with carrier re-

moved) of a five-element mode-locked array. This measure-

ment was made using a high-speed sampling oscilloscope,

with the llGHz carrier removed using an envelope detec-

tion feature. Also shown for comparison is the theoreti-

cal expression (5) for five equal amplitude oscillators, with

good agreement observed between the theory and measure-
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Figure 5 — Measured (dots) and theoretical (solid line)
time dependence of the output signal power envelope of five

mod~locked oscillators.

ment. As the number of modes (or in this case, oscillators)

increases, the pulse width narrows and the peak power in-

creases.

When the individual oscillators are spatially separated at

distances comparable to a wavelength (at the carrier fre-

quency), it can be shown that the system becomes a contin-

uous scanning array. The tot al electric field above the array

can then be written as

+n

i=—??

where kO is the free+pace propagation constant, G(O) is the

amplitude gain function of each antenna element, and Al

is a path difference given by Al = Ad sin 0. Assuming the

conditions for mode-locking (4) and equal amplitudes gives

the following expression

Relative Amplitude, Linear Scala

Figure 6 — Polar antenna plot simulating pulse scanning

for a five-element )rnode-locked array, using patch antennas,
The elements are spaced one-half wavelength apart. Only the
main lobes have been drawn for clarity, at equally spaced time
increments over one cycle.
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Equation (7) has been plotted in figure 6 for a five-oscillator

patch antenna array, at several time increments during one

cycle of the pulse train. In this figure, a simple model for

patch gain function has been assumed [9] and the element

spacing is Ao/2 where )0 is the free-space wavelength. The

pulse repetition frequency is 100 MHz. Note from (7) that

the amount of scan coverage is determined by the element

spacing Ad and the gain function G(O). If all the oscillators

were located at a single point (Ad = O), there would be no

beam scanning.

5. CONCLUSIONS

Systems of coupled oscillators possess a number of inter-

esting and useful nonlinear dynamical phenomena. Arrays

of coupled oscillators have been used to model complicated

biological and neural activity [12], and have now proved use-

ful in power-combining applications. For narrow distribu-

tions of natural (or free-running) frequencies, all oscillators

can synchronized to a common frequency through the phe-

nomenon of injection locking. This is the required mode

for CW power-combining. When the frequencies are very

widely distributed, this mutual synchronization is impossi-

ble, and the system can exhibit chantic behaviour. However,

we have found experimentally that by carefully chosing the

frequency distribution, a stable mode-locked state can be

established in which the collective output of the oscillator

array consists of a train of pulses, similar to a mode-locked

laser. When the oscillators are spatially separated, the sys-

tem generates a scanned beam. A theory describing the

coupled-oscillator dynamics has been developed to explore

these new effects, and the theory is amply supported with

empirical evidence obtained with small arrays of X-band

oscillators.
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