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Abstract — Arrays of coupled oscillators have recently
been considered for millimeter-wave power-combining. Such
systems possess a number of interesting and potentially
useful nonlinear dynamical phenomena. A new theory de-
scribing arrays of coupled millimeter-wave oscillators is pre-
sented, and two important applications of such arrays—CW
power combining, and a new mode-locking technique for
pulse generation—will be discussed. Conditions for estab-
lishing mutual synchronization and the correct phase rela-
tionships have been investigated with the theory, and veri-
fied experimentally using several prototype X-band arrays.

1. INTRODUCTION

Obtaining useful levels of power from solid-state millimeter-
wave systems will require combining the power from hun-
dreds, or even thousands of individual active devices. Quasi-
optical device arrays [1] have been suggested as an effi-
cient solution to this problem. One quasi-optical architec-
ture that has been successfully demonstrated is the coupled-
oscillator array [2]. In this approach, individual solid-state
oscillators with integrated antennas are grouped in an array.
Mutual coupling between the array elements then synchro-
nizes frequency and phase relationships, so that coherent
power-combining takes place in the free-space over the ar-
ray. In addition to CW power-combining, these coupled-
oscillator arrays can be operated in a fundamentally new
mode of operation [3-4] which produces periodic trains of
high-energy pulses. This new operation is based on a mode-
locking technique similar to that used in the short-pulse
laser community. Furthermore, mode-locked arrays possess
a beam-scanning property, which suggests their use in a
radar application.

Some rudiments of a coupled-oscillator theory have been
published to date [2]. This theory has been expanded
to explain the recent experimental observations of mode-
locked pulse trains. The theory is important in determining
the physical parameters required to synthesize a particular
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mode of operation. New theoretical results are presented in
this paper, including extensive computer simulations of ar-
ray phase dynamics. The theory is rigorously verified using
several Gunn diode arrays operating at X-band. In addi-
tion, new experimental results are presented for both the
CW power-combining and mode-locking applications.
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Figure 1 — Schematic showing the essential elements of a
quasi-optical coupled-oscillator array. Each oscillator contains
an integrated antenna, and mutual coupling between antennas
leads to oscillator interaction.

2. COUPLED-OSCILLATOR THEORY

The system under consideration is shown schematically in
figure 1. The oscillators are modelled by a simple, single-
tuned resonant circuit, with a lumped negative resistance
representing the active device; this simple model has been
surprisingly successful in predicting the behaviour of many
types of oscillators, using a variety of devices. The mutual
interaction between oscillators is assumed to be described
by a complex coupling coefficient. For coupling between
adjacent oscillators, this coupling parameter is written as
Aexp(—3®). Following a standard method-of-averages ap-
proach [10-11], and assuming only nearest-neighbor inter-
action amongst array elements, yields the set of equations
for N oscillators
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where ¢ = 1,2,..., N, and A;, w;, and 6; are the amplitude,
frequency, and instantaneous phase, respectively, of oscil-
lator i, and @ is the Q-factor of the oscillator embedding
circuit. These equations are in a form of coupled Van der Pol
oscillators [10]. For A = 0 the oscillators are uncoupled, and
(1) reduces to a set of isolated limit cycle oscillators with
amplitudes A; = 1 and frequencies w;. These equations are
quite general, but are difficult to attack analytically because
of the nonlinearities.

3. CW POWER-COMBINING

If the coupling is not too strong, then the amplitudes of
the oscillators will remain close to their free-running values,
and the dynamics will be essentially contained in the phase
equation alone. Furthermore, if the free-running frequencies
are close enough, then the oscillators can lock to the same
frequency. When this happens, df;/dt = w in the steady-
state, giving
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where ¢ = 1,2,...,N. This equation can be viewed as a

generalization of Adler’s equation [6]. Noting that one of
the phase variables is arbitrary and can be set to zero,
this is a set of N equations with N unknowns (w is an
unknown), which can in principle be solved for the un-
known phase distribution and steady-state synchronized fre-
quency. In general there are many possible phase distribu-
tions which satisfy (2), but not all are necessarily stable
solutions. Mode stability can be analyzed using a perturba-
tion analysis, which leads to a linear matrix equation. This
stability analysis results in an additional constraint on the
phase variables.
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Figure 2 — Computer simulation of five nearly identical

coupled oscillators. After an initial turn-on transient, the os-
cillators synchronize to a common frequency and phase.
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Equation (2) was first considered in [2] for some simple
cases, to gain insight into the operation of oscillator chains.
Recently, (2) and the corresponding stability constraint have
been investigated analytically and through computer simu-
lations, in order to determine the necessary conditions for
coherent power-combining. Figure 2 shows an example sim-
ulation. The theory has also been experimentally verified in
a systematic and rigorous manner. Individual Gunn oscil-
lators [5] were fabricated and mounted on small aluminum
carriers, permitting a continuous variation of oscillator spac-
ings and hence the coupling between them. Antenna pat-
terns were then measured to characterize the phase and
amplitude distribution. A comparison of theoretical and
experimental radiation patterns for one particular example
is shown in figure 3. The theory curve was calculated using

the phase distribution found from solving (2) and the sta-
bility constraint. Excellent agreement is observed between
theory and experiment regarding the number and placement
of lobes and nulls in the patterns.
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Figure 3 — Radiation patterns for four coupled oscillators,
for one particular value of the coupling phase ®. The excellent
agreement verifies that the theoretical formulation adequately
predicts the observed phase distribution.

4. MODE-LOCKED ARRAYS

Mode-locking refers to a situation where a number of equally
spaced spectral modes are simultaneously produced and
“locked” in phase, thereby producing a periodic train of
pulses. This technique is widely used in short-pulse laser

systems. Mathematically, the superposition of a set of
N = 2n + 1 different spectral modes can be written as
E(t) =) Eiexp {j(wit + ¢:)} 3)

The conditions for equally-spaced frequencies and locked
phases are

wi = wp — iAw i=-n,...,n (4a)

$i— Pio1 = A¢ (4b)



where Aw and A¢ are constants. Assuming these conditions
are met, and with equal amplitudes, F; = Ej, then (1) can
be written as
sin [N (Awt + Ag)/2

B = B et qj%] eplunt) ()
which has the form of a carrier signal at a frequency wo
modulated by a periodic train of pulses, with pulse repeti-
tion frequency Aw.

Recent demonstrations have shown that coupled-oscillator
arrays can also be operated in this mode [3-4]. In this case,
each oscillator runs at a different frequency, and mutual
pulling effects “lock” the system into a mode-locked state.
This can be explained with reference to figure 4. When an
external signal is injected into an oscillator which is out-
side the locking bandwidth of the the oscillator, a spectrum
of frequencies due to beating effects is produced [6-8]. The
additional frequencies are equally spaced by an amount pro-
portional to the difference in the injected and free-running
frequencies of the oscillator. In addition, Armand [8] has
shown that there is also a constant phase progression among
these additional spectral components. The idea behind the
mode-locked array is to use the additional spectral compo-
nents arising from the mutual pulling effects to injection-
lock other oscillators in the system. In this way, the two
key requirements (4) for mode-locking can be enforced.
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Figure 4 — Frequency spectrum of two coupled oscillators.
Mutual pulling effects give rise to a number of additional spec-
tral components. These can be used to injection-lock other
oscillators.

Figure 5 shows the measured output power (with carrier re-
moved) of a five-element mode-locked array. This measure-
ment was made using a high-speed sampling oscilloscope,
with the 11 GHz carrier removed using an envelope detec-
tion feature. Also shown for comparison is the theoreti-
cal expression (5) for five equal amplitude oscillators, with
good agreement observed between the theory and measure-
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Figure 5 —  Measured (dots) and theoretical (solid line)

time dependence of the output signal power envelope of five
mode-locked oscillators.

ment. As the number of modes (or in this case, oscillators)
increases, the pulse width narrows and the peak power in-
creases.

When the individual oscillators are spatially separated at
distances comparable to a wavelength (at the carrier fre-
quency), it can be shown that the system becomes a contin-
uous scanning array. The total electric field above the array
can then be written as

+n
E(r,6,t)= 3 EG@)exp {s[(wit + ¢ +ikoAll}  (6)
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where ko is the free-space propagation constant, G(6) is the
amplitude gain function of each antenna element, and Al
is a path difference given by Al = Adsind. Assuming the
conditions for mode-locking (4) and equal amplitudes gives
the following expression

sin [N (Awt + koAdsin6)/2]

E(T: 0, t) = G(e) g0t (7)

sin [(Awt + koAdsin8)/2]

Relative Amplitude, Linear Scale

Figure 6 — Polar antenna plot simulating pulse scanning
for a five-element mode-locked array, using patch antennas.
The elements are spaced one-half wavelength apart. Only the
main lobes have been drawn for clarity, at equally spaced time
increments over one cycle.



Equation (7) has been plotted in figure 6 for a five-oscillator
patch antenna array, at several time increments during one
cycle of the pulse train. In this figure, a simple model for
patch gain function has been assumed [9] and the element
spacing is Ao/2 where Ao is the free-space wavelength. The
pulse repetition frequency is 100 MHz. Note from (7) that
the amount of scan coverage is determined by the element
spacing Ad and the gain function G(8). If all the oscillators
were located at a single point (Ad = 0), there would be no
beam scanning.

5. CONCLUSIONS

Systems of coupled oscillators possess a number of inter-
esting and useful nonlinear dynamical phenomena. Arrays
of coupled oscillators have been used to model complicated
biological and neural activity [12], and have now proved use-
ful in power-combining applications. For narrow distribu-
tions of natural (or free-running) frequencies, all oscillators
can synchronized to a common frequency through the phe-
nomenon of injection locking. This is the required mode
for CW power-combining. When the frequencies are very
widely distributed, this mutual synchronization is impossi-
ble, and the system can exhibit chaotic behaviour. However,
we have found experimentally that by carefully chosing the
frequency distribution, a stable mode-locked state can be
established in which the collective output of the oscillator
array cousists of a train of pulses, similar to a mode-locked
laser. When the oscillators are spatially separated, the sys-
tem generates a scanned beam. A theory describing the
coupled-oscillator dynamics has been developed to explore
these new effects, and the theory is amply supported with
empirical evidence obtained with small arrays of X-band
oscillators.
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